
SunSwap 2.0 Interface Documentation

-- Sun Team

v 1.0.4

Table of Contents

I. Backend API 3	
1.1 Access all trading pairs 3	

II. Smart Contract Interface 4	
2.1 Smart contract address 4	
2.2 List of contract interfaces 4	

2.2.1 TRC20 token 4	
2.2.2 Factory 5	
2.2.3 ISunswapV2Router 5	

2.3 Description of contract interfaces 7	
2.3.1 Factory 7	

2.3.1.1 Query interface 7	
1. getPair 7	
2. allPairs 8	
3. allPairsLength 8	

2.3.1.2 Modification interface 9	
1. createPair 9	

2.3.1.3 Contract event 9	
1. PairCreated 9	

2.3.2 Router 10	
2.3.2.1 Query interface 10	

1. factory 10	
2. WETH 10	

2.3.2.2 Modification interface 11	
1. addLiquidity 11	
2. addLiquidityETH 12	
3. removeLiquidity 13	
4. removeLiquidityETH 14	
5. removeLiquidityWithPermit 15	
6. removeLiquidityETHWithPermit 17	
7. removeLiquidityETHSupportingFeeOnTransferTokens 18	
8. removeLiquidityETHWithPermitSupportingFeeOnTransferTokens 19	
9. swapExactTokensForTokens 20	
10. swapExactETHForTokens 21	
11. swapTokensForExactETH 22	
12. swapExactTokensForETH 23	
13. swapETHForExactTokens 24	
14. swapExactTokensForTokensSupportingFeeOnTransferTokens 25	
15. swapExactETHForTokensSupportingFeeOnTransferTokens 26	
16. swapExactTokensForETHSupportingFeeOnTransferTokens 27	

I. Backend API

1.1 Access all trading pairs
GET: https://openapi.sun.io/v2/allpairs?ver=3

Parameters:
page_size : int, size of each page, max 500
page_num: int, number of the page, starting from 0
token_address: optional; return only the data containing the specific token address
orderBy: optional; return the data ordered by the specific item (price, quote_volume or
base_volume)

desc: optional; true = decreasing order; false = increasing order

Return format:

{
"data": [{

"TNUC9Qb1rRpS5CbWLmNMxXBjyFoydXjWFR_TR7NHqjeKQxGTCi8q8ZY4pL8otSzgjLj6tf":
//key: ids of base_token and quote_token
 {

"quote_id": "TNUC9Qb1rRpS5CbWLmNMxXBjyFoydXjWFR",
"quote_decimal": "6", //precision of quote_token
"quote_name": "Wrapped TRX", //name of quote_token
"quote_symbol": "WTRX", //symbol of quote_token
"base_id": "TR7NHqjeKQxGTCi8q8ZY4pL8otSzgjLj6t", //address of base_token
"base_decimal": "6", //precision of base_token
"base_name": "Tether USD", //name of base_token
"base_symbol": "USDT", //symbol of base_token
"price": "0.938196997790940827", //price of quote_token, calculated in base_token
"quote_volume": "0", //total amount of quote_token traded in the last 24 hours

(minimum unit)
"base_volume": "0" //total amount of base_token traded in the last 24 hours

(minimum unit)
}

}],
"err_msg": "",
"err_no": 0,
"total_num": 143 //total number of entries

}

II. Smart Contract Interface

2.1 Smart contract address

Name Address Note

factory contract TKWJdrQkqHisa1X8HUdHEfREvTzw4pMAaY Factory contract is
designed to create
trading pairs and
manage lists of trading
pairs.

router contract TKzxdSv2FZKQrEqkKVgp5DcwEXBEKMg2Ax

pair contract TFGDbUyP8xez44C76fin3bn3Ss6jugoUwJ Each trading pair has a
pair contract and it is the
contract address for the
USDT/TRX pair.

2.2 List of contract interfaces

2.2.1 TRC20 token

interface ITRC20 {
 function transfer(address to, uint256 value) external returns (bool);
 function approve(address spender, uint256 value) external returns (bool);
 function transferFrom(address from, address to, uint256 value) external returns (bool);
 function totalSupply() external view returns (uint256);
 function balanceOf(address who) external view returns (uint256);
 function allowance(address owner, address spender) external view returns (uint256);
 event Transfer(address indexed from, address indexed to, uint256 value);
 event Approval(address indexed owner, address indexed spender, uint256 value);
}

2.2.2 Factory

interface ISunswapV2Factory {
 event PairCreated(address indexed token0, address indexed token1, address pair, uint);

 function feeTo() external view returns (address);
 function feeToSetter() external view returns (address);

 function getPair(address tokenA, address tokenB) external view returns (address pair);
 function allPairs(uint) external view returns (address pair);
 function allPairsLength() external view returns (uint);

 function createPair(address tokenA, address tokenB) external returns (address pair);

 function setFeeTo(address) external;
 function setFeeToSetter(address) external;
}

2.2.3 ISunswapV2Router

interface ISunswapV2Router01 {
 function factory() external pure returns (address);
 function WETH() external pure returns (address);

 function addLiquidity(
 address tokenA,
 address tokenB,
 uint amountADesired,
 uint amountBDesired,
 uint amountAMin,
 uint amountBMin,
 address to,
 uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
 function addLiquidityETH(
 address token,
 uint amountTokenDesired,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
 function removeLiquidity(
 address tokenA,
 address tokenB,
 uint liquidity,
 uint amountAMin,
 uint amountBMin,
 address to,
 uint deadline

) external returns (uint amountA, uint amountB);
 function removeLiquidityETH(
 address token,
 uint liquidity,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline
) external returns (uint amountToken, uint amountETH);
 function removeLiquidityWithPermit(
 address tokenA,
 address tokenB,
 uint liquidity,
 uint amountAMin,
 uint amountBMin,
 address to,
 uint deadline,
 bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
 function removeLiquidityETHWithPermit(
 address token,
 uint liquidity,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline,
 bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
 function swapExactTokensForTokens(
 uint amountIn,
 uint amountOutMin,
 address[] calldata path,
 address to,
 uint deadline
) external returns (uint[] memory amounts);
 function swapTokensForExactTokens(
 uint amountOut,
 uint amountInMax,
 address[] calldata path,
 address to,
 uint deadline
) external returns (uint[] memory amounts);
 function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint
deadline)
 external
 payable
 returns (uint[] memory amounts);
 function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path,
address to, uint deadline)
 external
 returns (uint[] memory amounts);
 function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path,
address to, uint deadline)
 external
 returns (uint[] memory amounts);
 function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint
deadline)
 external
 payable

 returns (uint[] memory amounts);

 function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
 function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint
amountOut);
 function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint
amountIn);
 function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[]
memory amounts);
 function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[]
memory amounts);
}

2.3 Description of contract interfaces

2.3.1 Factory

2.3.1.1 Query interface

1. getPair

function getPair(address tokenA, address tokenB) external view returns (address pair);

Function description: Use tokenA and tokenB to acquire the corresponding pair address.

Return the zero address (0x00) if the pair

address is not created.

Parameter description:

Paramete

r

Type Description

tokenA address TRC20 token

address

tokenB address TRC20 token

address

Returns:

address Trading pair address

2. allPairs

function allPairs(uint) external view returns (address pair);

Function description: Return the address of the trading pair N (0-indexed) created by the

factory contract. If the corresponding index has not been created, return the zero address

(0x00).

Parameter description:

Paramete

r

Type Description

index uint256 TRC20 token

address

Returns:

address Trading pair address

3. allPairsLength

function allPairsLength() external view returns (uint);

Function description: Return the number of trading pairs created via the factory contract.

Returns:

uint Total number of

trading pairs

2.3.1.2 Modification interface

1. createPair

function createPair(address tokenA, address tokenB) external returns (address pair);

Function description: Create a pair address for tokenA and tokenB when their corresponding

trading pair does not exist.

Parameter description:

Paramete

r

Type Description

tokenA address TRC20 token

address

tokenB address TRC20 token

address

Returns:

address Trading pair address

2.3.1.3 Contract event

1. PairCreated

 event PairCreated(address indexed token0, address indexed token1, address pair, uint);

Function description: The interface sends an event when creating trading pair with

createPair.

Parameter description:

Parameter Type Description

token0 address TRC20 token address

token1 address TRC20 token address

pair address TRC20 token's corresponding exchange

address in JustSwap

index uint The final uint log value for the first trading

pair created is 1, the value for the second pair

is 2, and so on.

2.3.2 Router

2.3.2.1 Query interface

1. factory

function factory() external pure returns (address);

Function description: Return the factory contract address.

Returns:

address factory contract address

2. WETH

function WETH() external pure returns (address);

Function description: Return the WTRX contract address.

Returns:

address WTRX contract address

2.3.2.2 Modification interface

1. addLiquidity

 function addLiquidity(
 address tokenA,
 address tokenB,
 uint amountADesired,
 uint amountBDesired,
 uint amountAMin,
 uint amountBMin,
 address to,
 uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);

Function description:

Add liquidity to the TRC-20 ⇄ TRC-20 pool, and then mint liquidity tokens as markers.

Approve before adding liquidity.

Parameter description:

Parameter Type Description

tokenA address TRC20 token address

tokenB address TRC20 token address

amountADesired uint256 Add this amount as the liquidity of tokenA if the

price of B/A is <=

amountBDesired/amountADesired (i.e. A

depreciates).

amountBDesired uint256 Add this amount as the liquidity of tokenB if the

price of A/B is <=

amountADesired/amountBDesired (i.e. B

depreciates).

amountAMin uint256 This limit value calculated from the slippage

must be lower than amountADesired.

amountBMin uint256 This limit value calculated from the slippage

must be lower than amountBDesired.

to address Address receiving liquidity token

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amountA uint256 Amount of tokenA sent to the pool

amountB uint256 Amount of tokenB sent to the pool

liquidity uint256 Additional amount of liquidity token issued to the

caller

2. addLiquidityETH

function addLiquidityETH(
 address token,
 uint amountTokenDesired,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);

Function description:

Add liquidity to the TRC-20 ⇄ WTRX pool with TRX, and then mint liquidity tokens as

markers.

Approve before adding liquidity.

Parameter description:

Parameter Type Description

token address TRC20 token address

amountTokenDesir

ed

uint256 Add this amount as the liquidity of token if the

price of WTRX/token is <=

msg.value/amountTokenDesired (i.e. token

depreciates)

msg.value

(amountETHDesire

d)

uint256 Add this amount as the liquidity of WTRX if the

price of token/WTRX is<=

amountTokenDesired/msg.value (i.e. WTRX

depreciates)

amountTokenMin uint256 This limit value calculated from the slippage

must be lower than amountTokenDesired

amountETHMin uint256 This limit value calculated from the slippage

must be lower than msg.value

to address Address receiving liquidity token

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amountToken uint256 Amount of token sent to the pool

amountETH uint256 Amount of TRX converted to WTRX and sent to the

pool

liquidity uint256 Additional amount of liquidity token issued to the

caller

3. removeLiquidity

function removeLiquidity(
 address tokenA,
 address tokenB,
 uint liquidity,
 uint amountAMin,
 uint amountBMin,
 address to,

 uint deadline
) external returns (uint amountA, uint amountB);

Function description:

Remove liquidity from the TRC-20 ⇄ TRC-20 pool. Approval is needed before the removal of

liquidity.

Parameter description:

Parameter Type Description

tokenA address TRC20 token address

tokenB address TRC20 token address

liquidity uint256 Amount of the liquidity token to be removed

amountAMin uint256 Minimum amount of tokenA to be received;

calculated from the slippage

amountBMin uint256 Minimum amount of tokenB to be received;

calculated from the slippage

to address Address receiving tokenA/tokenB

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amountA uint256 Amount of tokenA received

amountB uint256 Amount of tokenB received

4. removeLiquidityETH

function removeLiquidityETH(
 address token,
 uint liquidity,
 uint amountTokenMin,
 uint amountETHMin,

 address to,
 uint deadline
) external returns (uint amountToken, uint amountETH);

Function description:

Remove liquidity from the TRC-20 ⇄ WTRX pool and convert WTRX into TRX. Approval is

needed before the removal of liquidity.

Parameter description:

Parameter Type Description

token address TRC20 token address

liquidity uint256 Amount of the liquidity token to be removed

amountTokenMin uint256 Minimum amount of the token to be received;

calculated from the slippage

amountETHMin uint256 Minimum amount of TRX to be received;

calculated from the slippage

to address Address receiving token/TRX

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amountToken uint256 Amount of token received

amountETH uint256 Amount of TRX received

5. removeLiquidityWithPermit

function removeLiquidityWithPermit(
 address tokenA,
 address tokenB,
 uint liquidity,
 uint amountAMin,
 uint amountBMin,

 address to,
 uint deadline,
 bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);

Function description:

Remove liquidity from the TRC-20 ⇄ TRC-20 pool. Approval is not needed when removing

liquidity due to the existence of permit.

Parameter description:

Parameter Type Description

tokenA address TRC20 token address

tokenB address TRC20 token address

liquidity uint256 Amount of the liquidity token to be removed

amountAMin uint256 Minimum amount of tokenA to be received;

calculated from the slippage

amountBMin uint256 Minimum amount of tokenB to be received;

calculated from the slippage

to address Address receiving tokenA/tokenB

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

approveMax bool Whether the amount to be approved by the

signature is uint(-1) or liquidity

v uint8 v component in permit signature

r bytes32 r component in permit signature

s bytes32 s component in permit signature

Returns:

amountA uint256 Amount of tokenA received

amountB uint256 Amount of tokenB received

6. removeLiquidityETHWithPermit

function removeLiquidityETHWithPermit(
 address token,
 uint liquidity,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline,
 bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);

Function description:

Remove liquidity from the TRC-20 ⇄ WTRX pool and convert WTRX into TRX. Approval is

not needed when removing liquidity due to the existence of permit.

Parameter description:

Parameter Type Description

token address TRC20 token address

liquidity uint256 Amount of the liquidity token to be removed

amountTokenMin uint256 Minimum amount of the token to be received;

calculated from the slippage

amountETHMin uint256 Minimum amount of TRX to be received;

calculated from the slippage

to address Address receiving token/TRX

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

approveMax bool Whether the amount to be approved by the

signature is uint(-1) or liquidity

v uint8 v component in permit signature

r bytes32 r component in permit signature

s bytes32 s component in permit signature

Returns:

amountToken uint256 Amount of tokens received

amountETH uint256 Amount of TRX received

7. removeLiquidityETHSupportingFeeOnTransferTokens

function removeLiquidityETHSupportingFeeOnTransferTokens(
 address token,
 uint liquidity,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline
) external returns (uint amountETH);

Function description:

Remove liquidity from the TRC-20 ⇄ WTRX pool and convert WTRX into TRX. This function

is applicable to tokens that charge transfer fees (or deflationary tokens). Approval is needed

before the removal of liquidity.

Parameter description:

Parameter Type Description

token address TRC20 token address

liquidity uint256 Amount of liquidity tokens to be removed

amountTokenMin uint256 Minimum amount of the token needed;

calculated from the slippage

amountETHMin uint256 Minimum amount of TRX needed; calculated

from the slippage

to address Address receiving token/TRX

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amountETH uint256 Amount of TRX received

8. removeLiquidityETHWithPermitSupportingFeeOnTransferTokens

function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
 address token,
 uint liquidity,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline,
 bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);

Function description:

Remove liquidity from the TRC-20 ⇄ WTRX pool and convert WTRX into TRX. This function

is applicable to tokens that charge transfer fees. Approval is not needed when removing

liquidity due to the existence of permit.

Parameter description:

Parameter Type Description

token address TRC20 token address

liquidity uint256 Amount of liquidity tokens to be removed

amountTokenMin uint256 Minimum amount of the token needed;

calculated from the slippage

amountETHMin uint256 Minimum amount of TRX needed; calculated

from the slippage

to address Address receiving token/TRX

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

approveMax bool Whether the amount to be approved by the

signature is uint(-1) or liquidity

v uint8 v component in permit signature

r bytes32 r component in permit signature

s bytes32 s component in permit signature

Returns:

amountETH uint256 Amount of TRX received

9. swapExactTokensForTokens

function swapExactTokensForTokens(
 uint amountIn,
 uint amountOutMin,
 address[] calldata path,
 address to,
 uint deadline
) external returns (uint[] memory amounts);

Function description:

This parameter is used to swap a specified amount of the input token into the maximum

amount of the output token possible. The first element of the parameter path is the address

of the input token and the last element is that of the output token. Any elements in between

represent the trading pairs. Approval is needed before the swap.

Parameter description:

Parameter Type Description

amountIn uint256 Amount of the input token

amountOutMin uint256 Minimum amount of the output token needed;

calculated from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving the output token

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amounts uint256[]

memory

Amount of the input token and all consequent output

token

10. swapExactETHForTokens

function swapExactETHForTokens(
 uint amountOutMin,
 address[] calldata path,
 address to,
 uint deadline
) external payable returns (uint[] memory amounts);

Function description:

This parameter is used to swap a specified amount of TRX into the maximum amount of the

output token possible. The first element of the parameter path is the WTRX address and the

last element is that of the output token. Any elements in between represent the trading pairs.

Parameter description:

Parameter Type Description

msg.value uint256 Amount of TRX sent

amountOutMin uint256 Minimum amount of the output token needed;

calculated from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving the output token

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amounts uint256[]

memory

Amount of the input token and all consequent output

token

11. swapTokensForExactETH

function swapTokensForExactETH(
 uint amountOut,
 uint amountInMax,
 address[] calldata path,
 address to,
 uint deadline
) external returns (uint[] memory amounts);

Function description:

This parameter is used to swap the minimum amount of input token possible into a specific

amount of TRX. The first element of the parameter path is the address of the input token,

and the last element the WTRX address. Any elements in between represent the pairs to be

traded. Approval is needed before the swap. If the to address is a smart contract, it has to be

able to receive TRX.

Parameter description:

Parameter Type Description

amountOut uint256 Amount of TRX to be received

amountInMax uint256 Maximum amount of the input token needed;

calculated from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving TRX

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amounts uint256[]

memory

Amount of the input token and all consequent output

token

12. swapExactTokensForETH

function swapExactTokensForETH(
 uint amountIn,
 uint amountOutMin,
 address[] calldata path,
 address to,
 uint deadline
) external returns (uint[] memory amounts);

Function description:

This parameter is used to swap a specified amount of input token into the maximum amount

of TRX possible. The first element of the parameter path is the address of the input token,

and the last element the WTRX address. Any elements in between represent the pairs to be

traded. If the to address is a smart contract, it has to be able to receive TRX.

Parameter description:

Parameter Type Description

amountIn uint256 Amount of the input token

amountOutMin uint256 Minimum amount of the output token needed;

calculated from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving TRX

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amounts uint256[]

memory

Amount of the input token and all consequent output

token

13. swapETHForExactTokens

function swapETHForExactTokens(
 uint amountOut,
 address[] calldata path,
 address to,
 uint deadline
) external payable returns (uint[] memory amounts);

Function description:

This parameter is used to swap the minimum amount of input token possible into a specific

amount of TRX. The first element of the parameter path is the WTRX address and the last

element is that of the output token. Any elements in between represent the trading pairs. If

the to address is a smart contract, it has to be able to receive TRX.

Parameter description:

Parameter Type Description

amountOut uint256 Amount of output token to be received

msg.value

(amountInMax)

uint256 Maximum amount of TRX to be paid; calculated

from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving the output token

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

Returns:

amounts uint256[]

memory

Amount of the input token and all consequent output

token

14. swapExactTokensForTokensSupportingFeeOnTransferTokens

function swapExactTokensForTokensSupportingFeeOnTransferTokens(
 uint amountIn,
 uint amountOutMin,
 address[] calldata path,
 address to,
 uint deadline
) external;

Parameter description:

This parameter is used to swap a specified amount of the input token into the maximum

amount of the output token possible. The first element of the parameter path is the address

of the input token, and the last element that of the output token. Any elements in between

represent the pairs to be traded. This function is applicable to tokens that charge transfer

fees. Approval is needed before the swap.

Parameter description:

Parameter Type Description

amountIn uint256 Amount of the input token

amountOutMin uint256 Minimum amount of the output token needed;

calculated from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving the output token

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

15. swapExactETHForTokensSupportingFeeOnTransferTokens

function swapExactETHForTokensSupportingFeeOnTransferTokens(
 uint amountOutMin,
 address[] calldata path,
 address to,
 uint deadline
) external payable;

Parameter description:

This parameter is used to swap a specified amount of TRX into the maximum amount of the

output token possible. The first element of the parameter path is the WTRX address, and the

last element that of the output token. Any elements in between represent the pairs to be

traded.This function is applicable to tokens that charge transfer fees (or deflationary tokens).

Parameter description:

Parameter Type Description

msg.value

(amountIn)

uint256 Amount of TRX sent

amountOutMin uint256 Minimum amount of the output token needed;

calculated from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving the output token

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

16. swapExactTokensForETHSupportingFeeOnTransferTokens

function swapExactTokensForETHSupportingFeeOnTransferTokens(
 uint amountIn,
 uint amountOutMin,
 address[] calldata path,
 address to,
 uint deadline
) external;

Parameter description:

This parameter is used to swap a specified amount of input token into the maximum amount

of TRX possible. The first element of the parameter path is the address of the input token,

and the last element the WTRX address. Any elements in between represent the pairs to be

traded. This function is applicable to tokens that charge transfer fees (or deflationary

tokens). If the to address is a smart contract, it has to be able to receive TRX.

Parameter description:

Parameter Type Description

amountIn uint256 Amount of the input token

amountOutMin uint256 Minimum amount of the output token needed;

calculated from the slippage

path address[]

calldata

A group of token addresses with path.length

equal to or larger than 2; all trading pools

consisting of adjacent tokens must exist and

have liquidity

to address Address receiving TRX

deadline uint256 Unix timestamp; transaction will revert if

exceeding this time limit

